昕能XINNENG蓄电池SN12007 12V7AH详细说明
昕能XINNENG蓄电池SN12007 12V7AH详细说明
产品特点
板栅:采用子母板栅结构专利技术;正极板:涂膏式正极板,高温高湿4BS固化工艺;
隔板:具有高吸附、高稳定性的多微孔超细玻璃纤维隔板;
电池壳体:抗冲击、耐震动的高强度ABS(可选用阻燃级);
端子密封:采用多层极柱密封专有技术;安全阀:专利迷宫式双层防爆滤酸阀体结构;
接线端子:采用嵌铜芯圆端子结构设计。
使用寿命长采用了耐腐性良好的铅钙合金板栅,在25℃的环境温度下,正常浮充寿命可达10年以上。
高功率放电性能好采用了内阻值很小的优质极板和玻纤隔板,而且装配较紧,使得电池内阻极小。在-40℃~60℃温度范围内进行大电流放电,其输出功率比常规电池可高出15%左右。
维护简单;高达98%以上的氧复合效率,保证电解液不会损失,在它的整个寿命过程中无须加水或更换电解液。
蓄电池安全性能优越
极柱和外壳采用特殊的密封设计,无任何电解液泄漏。采用品质稳定的进口安全阀,动作可靠,重现性良好,绝无外部气体进入,适时释放出过量的压力
蓄电池可大电流快速充电,可用0.1~0.3C电流充电,充电时间可大大缩短。
充放电无记忆,蓄电池无论是高压区域或低压区域可进行充电,绝无记忆。(所谓记忆效应:意思是说电池好像记忆用户日常的充放电幅度和模式,日久就很难改变这种模式,不能再做大幅度充放电),铅酸电池低压区有记忆。
铅酸蓄电池电动势的产生
铅酸蓄电池充电后,正极板二氧化铅(PbO2),在硫酸溶液中水分子的作用下,少量二氧化铅与水生成可离解的不稳定物质--氢氧化铅(Pb(OH)4),氢氧根离子在溶液中,铅离子(Pb4)留在正极板上,故正极板上缺少电子。
铅酸蓄电池充电后,负极板是铅(Pb),与电解液中的硫酸(H2SO4)发生反应,变成铅离子(Pb2),铅离子转移到电解液中,负极板上留下多余的两个电子(2e)。
可见,在未接通外电路时(电池开路),由于化学作用,正极板上缺少电子,负极板上多余电子,两极板间就产生了一定的电位差,这就是电池的电动势。
2、铅酸蓄电池放电过程的电化反应铅酸蓄电池放电时, 在蓄电池的电位差作用下,负极板上的电子经负载进入正极板形成电流I。同时在电池内部进行化学反应。
负极板上每个铅原子放出两个电子后,生成的铅离子(Pb2)与电解液中的硫酸根离子(SO4-2)反应,在极板上生成难溶的硫酸铅(PbSO4)。
正极板的铅离子(Pb4)得到来自负极的两个电子(2e)后,变成二价铅离子(Pb2),,与电解液中的硫酸根离子(SO4-2)反应,在极板上生成难溶的硫酸铅(PbSO4)。正极板水解出的氧离子(O-2)与电解液中的氢离子(H)反应,生成稳定物质水。
电解液中存在的硫酸根离子和氢离子在电力场的作用下分别移向电池的正负极,在电池内部形成电流,整个回路形成,蓄电池向外持续放电。
放电时H2SO4浓度不断下降,正负极上的硫酸铅(PbSO4)增加,电池电阻增大(硫酸铅不导电),电解液浓度下降,电池电动势降低。
蓄电池在线监测还可以利用通讯手段进行网络化管理,将几个站或一地区的蓄电池监测通过光纤进行组网,建立一个实时远程智能化蓄电池监测网络化管理系统,以实现信息集中和远程控制,使运行检修人员、相关人员和管理决策层能够通过局域网内的任何一个终端用IE浏览的方式即可实时掌握各变电站蓄电池的运行情况及其性能变化趋势,使蓄电池得到及时的维护,同时也为“设备状态检修”提供可靠依据,将“定期维护检修”转变为“状态检修”,从而实现对蓄电池的科学化管理,保证系统的可靠、安全运行。